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Abstract

Governments, companies, and researchers have proposed regulatory frameworks,
acceptable use policies, and safety benchmarks in response to the risks of foun-
dation models (FMs). However, existing public benchmarks often define safety
categories based solely on previous literature or researchers’ intuitions, leading
to risk categorizations that do not correspond to existing regulation or developers’
own policies and that make it challenging to compare FMs across benchmarks.
To bridge this gap, we introduce AIR-BENCH 2024, among the first AI safety
benchmarks explicitly drawn from government and company policies. AIR 2024
decomposes 8 government regulations and 16 company policies into a four-tiered
safety taxonomy with 314 granular risk categories in the lowest tier. We examine
the gap between the risks considered by leading AI safety benchmarks and those
included in government and company policies, finding that these safety benchmarks
address at most 71% of the higher level risk categories explicitly referenced in gov-
ernment and company policies and do not address risks related to discrimination,
NCII, or automated decision-making in high-risk economic sectors. In an effort
to close this gap, we evaluate leading language models on AIR-BENCH 2024,
providing insights into how sensitive content is treated in different jurisdictions.

1 Background and Findings
AIR-BENCH 2024 [48] leverages the four-tiered risk categorization developed in the AI Risk
Taxonomy (AIR 2024) [47]. AIR 2024 was constructed by manually extracting and organizing risk
categories from a diverse set of AI governance documents, including 8 government frameworks from
the European Union, United States, and China [20, 14, 15, 7–9, 29, 10] and 16 corporate policies
from 9 leading AI firms worldwide [31, 32, 2, 28, 17, 4–6, 30, 37, 12, 11, 3]. As shown in Figure 1,
AIR 2024 organizes risks into a hierarchical structure. The most granular, level-4, contains 314
specific risk categories, which are grouped into 45 more general level-3 risk categories, 16 level-2 risk
categories, and four level-1 categories (System & Operational Risks, Content Safety Risks, Societal
Risks, and Legal & Rights-Related Risks). We use the AIR 2024 taxonomy to demonstrate gaps
in existing safety benchmarks with respect to discrimination and automated decision-making, and
clarify the need for safety evaluations that are relevant to government and company policies.

To assess the alignment between leading AI safety benchmarks and real-world regulations, we
mapped three benchmarks—HEx-PHI [33], HarmBench [25], and SALAD-Bench [23]—against AIR
2024’s 45 level-3 risk categories in Figure 2. These benchmarks were selected for their rigorous risk
categorization, high-quality data management, and human-in-the-loop curation pipeline design.1 We

1While other safety benchmarks exist [19, 45], their lack of detailed risk categorization or inclusion in
SALAD-Bench suggests that further mapping may offer limited additional insights.
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Figure 1: Comparison of covered risk categories in leading benchmarks published in 2024 versus the
314 unique risks detailed in AIR-BENCH 2024 across 45 mid-level categories, based on AIR 2024.

focus on level-3 risk categories as they provide a balance between specificity and generality, allowing
for meaningful comparisons across benchmarks while avoiding being overly broad or granular.

HEx-PHI identifies 11 major risk categories influenced by the acceptable use policies of OpenAI
and Meta [31, 27, 22], while HarmBench defines seven risk categories referencing four corporate
use policies and recent literature on LLMs’ potential for misuse [44, 18]. SALAD-Bench integrates
eight public benchmarks (HH-harmless, HH-red-teaming [16], AdvBench [49], Multilingual [13],
Do-Not-Answer [42], ToxicChat [24], Do Anything Now [36], and GPTFuzzer [46]), labeling them
with detailed risk categories derived from [43] alongside OpenAI and Meta’s policies.

Despite these benchmarks’ depth in comparison to others, our analysis reveals significant gaps in
coverage, even just at level-3. HEx-PHI covers 51% (23/45) of these categories, with a focus on fraud,
adult content, and privacy; HarmBench covers 26% (12/45), with a unique focus on CBRN risks;
and SALAD-Bench, the most comprehensive, covers 71% (32/45) with broader coverage of toxic
content, defamation, and representational harms. Each does not consider critical risk categories such
as Automated Decision-Making, Non-consensual Nudity, Deterring Democratic Participation, Unfair
Market Practices, and Discrimination towards Protected Characteristics. The omission of Automated
Decision-Making is particularly concerning, as risks associated with AI-driven decision-making in
criminal justice, lending, and housing are recognized in regulations across the EU, US, and China.

AIR 2024
Taxonomy

Normalized distribution of three leading benchmarks to AIR 2024 at level-3

Studied by ≤1 benchmark

Gaps to AIR 2024:
० Missing Categories
० Biased Evaluation
० Limited insights to 
regulation-based risks.

HEx-PHI

Figure 2: The gap between existing safety benchmarks and the list of risks specified in regula-
tion/policy (see [47]). We show the normalized distribution within each benchmark, highlighting the
biased distribution of each. The joint set of these top benchmarks still cannot fill the gap, and 21 of
45 level-3 risk categories (or 46%) are covered by at most one of the three benchmarks.

These gaps in safety benchmarks’ risk categorization limit the insights and relevance of such bench-
marks when companies seek to adhere to internal or governmental policies or simply to mitigate
harms associated with these safety risks [43, 35]. To address this gap, we propose AIR-BENCH 2024,
which directly builds on the granular 314 risks in 8 government policies and 16 company policies. By
aligning with the risk categories specified in real-world regulations and policies, AIR-BENCH 2024
aims to provide a more extensive evaluation tool for AI safety. We encourage the ML community to
build upon this work to address multifaceted safety challenges in an increasingly regulated landscape.
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2 Limitations

We consider regulatory frameworks from only the European Union, United States, and China. Though
these jurisdictions have some the most advanced regulatory frameworks, they have different concerns
from other parts of the globe and including only risk categories from their regulations and their
companies’ policies likely underweights important risks stemming from generative AI systems [1].
We intend to add policies from additional governments and companies to future analyses in order to
increase geographic diversity and make AIR-BENCH 2024 more relevant for systems deployed in
those jurisdictions [22].

Many of the government policies considered in [47] have yet to take full effect. Drawing on the
limitations stated in [47]: China is in the process of finalizing the implementing regulations for its
Interim Measures for the Management of Generative Artificial Intelligence Services [9]; the Codes
of Practice that will determine how the EU AI Act is enforced have yet to be drafted [14]; and the
extent to which the 2023 US Executive Order on AI has been implemented remains opaque [26].
Companies regularly change their policies, as evidenced by a shift in OpenAI’s Usage Policies in
2024 [32]. We hope this taxonomy is updated as government and company policies evolve.

Similarly, as a static benchmark, AIR-BENCH 2024’s risk categories require periodic updates to
keep pace with emerging risk categories specified in new regulations and policies. Future work could
explore dynamic benchmarking approaches that automatically adapt to evolving safety concerns, as
well as automated pipelines for aggregating new risk categories from recent policy documents.

There are many other safety benchmarks that we do not directly address in this work [21, 34, 38–41].
We prioritized benchmarks that, like AIR-BENCH 2024, rely on both human and language model-
generated data, have a well-defined risk taxonomy, and feature high-quality data management. We
hope to expand the coverage of this analysis to additional benchmarks in future work.

For the full dataset for AIR-BENCH 2024, see https://huggingface.co/datasets/st
anford-crfm/air-bench-2024.
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