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Evaluating the capabilities and risks of generative AI (GenAI) models and systems is crucial for their
successful development, deployment, and adoption. Despite this, many would likely agree with New
York Times columnist Kevin Roose’s recent characterization of the current state of GenAI evaluation
as “a mess—a tangle of sloppy tests, apples-to-oranges comparisons and self-serving hype” [16].
Even benchmarks, which have been viewed as the gold standard for measuring progress in GenAI
model development, are coming under criticism. Writing in the context of responsible AI, the 2024
AI Index Report identified “a significant lack of standardization in responsible AI reporting” wherein
leading model developers test their models against different benchmarks, which the authors suggest
“may reflect existing benchmarks becoming quickly saturated, rendering them ineffective for compari-
son” [11]. Furthermore, as NIST has observed, “measuring risk at at an earlier stage in the AI lifecycle
may yield different results than measuring risk at a later stage,” such as when a model becomes inte-
grated into a system [13]. All in all, there are few principles or guidelines to ensure evaluations are ef-
fective, often making it unclear which approaches are suitable for which specific evaluation objectives.
What GenAI evaluation lacks, in other words, is a systematic understanding of evaluation design. To
help address this gap, we propose a set of general dimensions that capture critical choices involved in
GenAI evaluation design. Situating evaluations within these dimensions draws attention to important
choices that might otherwise be overlooked—either when designing evaluations or evaluating them.

Although several prior papers have provided useful decompositions for understanding GenAI evalu-
ations, they are limited to specific types of evaluations, or evaluations of particular concepts. This in-
cludes work on disaggregated evaluations [1], sociotechnical safety evaluations [17], evaluations with
respect to the “socio-technical gap” [10], human interaction evaluations [6], and LLM benchmarks [4].
We argue that key insights can be drawn by considering a set of general dimensions that are relevant
to evaluations of any GenAI model or system with respect to any concept related to its capabilities
or risks. The concept of interest, such as reasoning ability or stereotyping, is crucial, and numerous
taxonomies of capabilities and risks provide different options to consider [e.g., 2, 3, 8, 9]. Just as
important is the object of the evaluation—be it a model, a system, or a component thereof. However,
once the concept and object have been specified, an evaluation designer is left with multiple critical
choices about the most appropriate methodology for evaluating that object with respect to that concept.

Building on Barocas et al.’s work on disaggregated evaluations [1], we propose a preliminary set of
general dimensions that capture critical choices involved in GenAI evaluation design and are relevant
to evaluations of any GenAI model or system with respect to any concept. As shown in the left side of
Table 1, these dimensions include the evaluation setting, the task type, the input source, the interaction
style, the duration, the metric type, and the scoring method. We arrived at these dimensions by
examining numerous evaluations, though they are not exhaustive and alternatives are likely possible.

To illustrate the utility of this set of general dimensions, consider evaluating the fairness of a GenAI
system. The concept of interest in such an evaluation might relate to events that compromise fairness,
such as system outputs that stereotype, demean, or erase certain social groups, or to the negative
fairness-related impacts of those events, such as reinforcing unjust social hierarchies. The particular
concept chosen will affect the methodology that is most appropriate for evaluating the system. The di-
mensions can help evaluation designers at this stage by drawing attention to various important choices
that might otherwise be overlooked. If we are evaluating the system with respect to system outputs
that stereotype, the evaluation might take place in a lab setting during a single session with inputs ob-
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Dimension Description & Example Values RAND OpenAI Google

Evaluation
setting

The setting in which the evaluation will take place, e.g.,
computer lab, wet lab, field test, production deployment

Computer lab Computer lab Computer lab

Task type The type of task involved in the evaluation, e.g., multiple
choice questions, objective open-ended task, subjective
open-ended task, real-world action facilitation

Subjective
open-ended

Objective
open-ended

Subjective
open-ended

Input
source

The source of inputs to the model or system, e.g., human
evaluator, human user/subject/expert, real world, AI

Human subject Human subject Human
evaluator

Interaction
style

The style of interaction with the model or system, e.g.,
single turn, iterative

Iterative Iterative Single turn

Duration The duration of the evaluation, e.g., single session, longer
duration, longitudinal

Longer
duration

Single sitting Single sitting

Metric
type

The type of metric, e.g., incidence, performance, feasi-
bility, relative incidence/performance/etc.

Relative
feasibility

Relative
performance

Incidence

Scoring
method

The method for scoring outputs or behaviors, e.g., auto-
mated, human expert

Human expert Human expert Human expert

Table 1: Left: Our proposed set of general dimensions that capture critical choices involved in
GenAI evaluation design. Right: How three GenAI evaluations of biological threats, conducted by
RAND [12], OpenAI [14], and Google DeepMind [15], might be situated within these dimensions.
(Shaded cells for a dimension indicate evaluations that have the same value for that dimension.)

tained from a variety of sources. However, if we are evaluating the system with respect to reinforcing
unjust hierarchies, longitudinal field tests might be more appropriate with inputs provided by humans
in iterative interactions with the system. In some cases, multiple complementary evaluations that
represent different points on these dimensions may be needed to shed light on a particular concept.

As a non-hypothetical example, consider three real-world GenAI evaluations of biological threats.
The U.S. Department of Homeland Security (DHS) [2024] noted that GenAI systems can lower
barriers to entry for chemical, biological, radiological, and nuclear (CBRN) attacks and called for
“a standard framework... for pre-release evaluation and red teaming of AI models.” Although no such
standard framework currently exists, there is a growing body of work on evaluating GenAI models
and systems with respect to CBRN threats. Table 1 shows our codings for how three recent GenAI
evaluations of biological threats, conducted by RAND [12], OpenAI [14], and Google DeepMind [15],
are situated within the dimensions. Several insights emerge from this: (A) All three evaluations used
human expert scoring, which may indicate that human judgment is essential for assessing complex
biological threats, or it could suggest the need to explore alternative scoring methods. (B) RAND and
OpenAI’s evaluations both involved human subjects generating inputs to a GenAI system with iterative
interactions, while Google DeepMind’s human evaluators worked with experts to create adversarial
inputs for prompting a GenAI model with single-turn interactions. The former seems more consistent
with the concerns DHS [5] voiced about lowering barriers to entry for human actors, while the latter
might offer a more direct assessment of the model, avoiding the noise introduced by the variation
in human subjects. (C) While all three evaluations used different metric types, both RAND and
OpenAI’s evaluations used relative metrics, comparing outputs produced by multiple sets of human
subjects, some with only access to the internet and others that also had access to a GenAI system.
This choice aligns with calls to assess the marginal risks of AI [7]. In contrast, Google DeepMind’s
evaluation, which is still under development, focused on the incidence of “problematic” outputs [15].

As the above examples illustrate, situating evaluations within our proposed set of general dimensions
can draw attention to important choices that might otherwise be overlooked—either when designing
evaluations or evaluating them. Specifically, the dimensions can guide decision-making during GenAI
evaluation design, helping evaluation designers determine the most appropriate methodology for
evaluating a particular GenAI model or system with respect to a particular concept. The dimensions
can also provide a structure for comparing different evaluations. Given the critical role of evaluations
in the successful development, deployment, and adoption of GenAI models and systems, we hope
that our proposal encourages a more methodical and explicit approach to GenAI evaluation design.
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Broader Impacts

By situating GenAI evaluations within a set of general dimensions, this paper seeks to address the cur-
rent lack of principles or guidelines for GenAI evaluation design. We hope this will lead to a number
of positive impacts, including improving evaluations, enhancing our collective understanding of the
capabilities and risks of GenAI models and systems, and supporting their responsible development,
deployment, and adoption. However, there are also potential negative impacts that must be considered
and mitigated. First, there is a risk that the relatively small number of dimensions we proposed could
give an illusion of simplicity, leading evaluation designers and other stakeholders to miss the neces-
sary nuance involved in designing and conducting effective evaluations. Similarly, if these dimensions
prove generally useful, there is a risk of overfocus, causing evaluation designers to overlook other
important choices that are not captured by them. As we further expand on the work described in this pa-
per, we can mitigate these potential negative impacts by articulating clear guidelines for their use and
non-use, as well as encouraging the development of alternative structures for GenAI evaluation design.

Limitations

This paper reflects a work in progress. It is possible that particular types of GenAI evaluations require
additional dimensions that we have not yet identified. In future work, we will seek to identify any
gaps in our proposed set of general dimensions and address them to improve comprehensiveness.

To enhance the practicality of the dimensions, it would be beneficial to provide concrete examples
of what can and cannot be learned from a GenAI evaluation given a particular choice. Such examples
would help evaluation designers understand the implications of their choices and improve the overall
utility of the dimensions. Additionally, to gain a deeper insight into the effectiveness of the dimen-
sions, it is essential to apply them to a broader spectrum of evaluations across various concepts and
objects. This expanded application would allow us to discern patterns and make further refinements.

Finally, although we demonstrated how to examine existing GenAI evaluations, such as three
real-world GenAI evaluations of biological threats, we touched only briefly (and hypothetically) on
using these dimensions to design new evaluations. This gap highlights the need for further research.
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