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Abstract

We investigate fairness dynamics during Large Language Model (LLM) training
to enable the diagnoses of biases and mitigations through training interventions
like early stopping; we find that biases can emerge suddenly and do not always
follow common performance metrics. We introduce two new metrics to evaluate
fairness dynamics holistically during model pre-training: Average Rank and Jensen-
Shannon Divergence by Parts. These metrics provide insights into the Pythia
models’ [1] progression of biases in gender prediction of occupations on the
WinoBias dataset [19]. By monitoring these dynamics, we find that (1) Pythia-6.9b
is biased towards men; it becomes more performant and confident predicting “male”
than “female” during training, (2) via early-stopping, Pythia-6.9b can exchange
1.7% accuracy on LAMBADA [15] for a 92.5% increase in fairness, and (3) larger
models can exhibit more bias; Pythia-6.9b makes more assumptions about gender
than Pythia-160m, even when a subject’s gender is not specified.

1 Introduction

Prior literature studies model performance during training [2, 9, 11, 18], yet few works monitor
fairness [6, 8, 4, 7], and none examine how fairness evolves during LLM training. Instead, fairness
is measured: (1) only after training [5, 13, 14, 17], (2) separately from performance, resulting in
poorly performing models being considered “fair” [14], and (3) with all-or-nothing metrics [1, 13],
where the model “picks” the token with maximum probability from a limited set of options without
considering the magnitude of the bias (e.g., {0.33, 0.34, 0.32} and {0.03, 0.95, 0.02} are considered
equally biased, even though the latter is significantly more so).

To address these issues, we present a new methodology for fairness evaluation by tracking fairness
dynamics throughout LLM training. We evaluate the open-sourced Pythia LLM suite [1] on a gender
prediction task adapted from the WinoBias benchmark [19] and introduce two new metrics that
provide a comprehensive picture of fairness by measuring performance, fairness, and confidence. We
demonstrate the efficacy of our metrics by showing that for Pythia-6.9b: (1) fairness dynamics during
training do not always mirror conventional performance metrics, (2) performance disparity grows
and fairness declines as training progresses, with the model becoming more performant and confident
when predicting “male” over “female,” (3) would benefit from early stopping, resulting in a 92.5%
fairer model as measured by our novel metric, and (4) is more likely to incorrectly pick gendered
answers (“male” or “female”), and prefer “male,” in gender neutral contexts than Pythia-160m.

2 Approach

Each WinoBias sample has a stereotypically female occupation, a stereotypically male occupation,
and a gendered pronoun referring to one of the subjects (Fig. 1(a)); we use WinoBias Type 2 samples,
where the pronoun unambiguously refers to one occupation. We generate two model prompts for each
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Gender Disambiguated

WinoBias Sample The clerk freely offered to help the developer 
with the paperwork and she accepted. 

Gender 
Unambiguous

The clerk freely offered to help the developer 
with the paperwork and she accepted. Out of 
the options “male,” “female,” and “not 
specified,” the developer’s gender is female

Gender 
Ambiguous  

The clerk freely offered to help the developer 
with the paperwork and she accepted. Out of 
the options “male,” “female,” and “not 
specified,” the clerk’s gender is not specified

(a) Example prompts generated from one
Type 2 WinoBias sample (additions in ital-
ics). Stereotypically female occupation is
pink, stereotypically male occupation is blue,
and the target answer is underlined.
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Mean JS Divergence by Parts: Correct Answer - Gender Disambiguated, Prostereotype Split, 6.9b

80k

(b) JSD-P per correct answer (“male”, “female”) and performance
on Open AI’s LAMBADA benchmark on Pythia-6.9b.
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Average Rank per Answer, Prostereotype Split, 6.9b

(c) Average Rank per correct answer
(“male”,“female”, “not specified”) on Pythia-6.9b.
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Mean JS Divergence by Parts - Gender Ambiguous (Target: Not Specified), Prostereotype Split

(d) JSD-P on gendered options for prompts where “not
specified” is correct, on Pythia 6.9b vs 160m.

Figure 1: Prompting setup and select Pythia evaluation results. Further details in Figs. 4(a), 5(a), 6(a).

sample; one prompt queries the model on the gender of the occupation referred to by the pronoun,
and the other queries the gender of the occupation not referenced by the pronoun (Fig. 1(a)). Each
prompt has three possible options (male, female, and not specified), and only one answer.

We evaluate fairness dynamics during training with metrics that use next token probabilities: Average
Rank (AR) for performance, and Jensen-Shannon Divergence by Parts (JSD-P) for fairness. AR
computes the mean rank of the answer token’s probability among the output probabilities for the entire
vocabulary; lower rank indicates better performance. AR is more nuanced than accuracy, accounting
for the magnitude of the error and not just its occurrence, enabling deeper insights into a model’s
poor performance (Fig. 2). For each answer option, JSD-P computes fairness as the divergence
of the output token probability from the ideal one-hot categorical distribution; JS Divergence [10]
sums over all answer options whereas JSD-P is computed per answer option (App. B). Smaller
differences between each option’s JSD-P is fairer and lower values are more confidently correct.
JSD-P overcomes limitations in all-or-nothing-fairness metrics [1, 13] by measuring both fairness
and certainty to quantify bias (Fig. 3). This is crucial for text generation using sampling, since a
distribution like {0.03, 0.95, 0.02} would exhibit more bias than {0.33, 0.34, 0.32}.

By tracking AR and JSD-P during training, in Figs. 1(b), 1(c), we establish that Pythia-6.9b can
benefit from early stopping at ≈ 80k steps, trading a 1.7% accuracy decrease on LAMBADA [15] for
a 92.5% increase in fairness (mean JSD-P difference drops from 0.73 to 0.05). Further, in Fig. 1(c),
the AR for tokens “male” and “female” (when each is the correct answer) diverges after ≈ 80k steps;
“male” AR improves, indicating a bias in performance towards “male.” Using JSD-P, for Pythia-6.9b,
we find larger probability mass on gendered answers, more so for “male” than “female,” for gender
ambiguous prompts compared to Pythia-160m, showing that Pythia-6.9b is more likely to assume
gender where it is unmentioned (Fig. 1(d)). Our results are significant under the Mann-Whitney U
Test [12] with p < 0.01, rejecting the null hypothesis that the samples’ underlying distributions are
the same (Figs. 4(b), 5(b), 6(b)).

Summary: We introduce AR and JSD-P to effectively characterize fairness dynamics during training,
enabling the findings that: (1) common performance measures do not always reflect fairness during
training, (2) early stopping can result in fairer models, (3) Pythia-6.9b is biased towards men, and (4)
larger models can exhibit more bias in gender neutral contexts. Tracking fairness dynamics with our
metrics can enable insights into bias development and opportunities for mitigation.
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A Limitations and Social Considerations

Our evaluation is limited to the WinoBias dataset and the Pythia model family. WinoBias only
examines bias across binary gender, which is a simplification of the contemporary understanding of
gender [3]. Further, WinoBias was constructed by referencing the US Bureau of Labor Statistics’
data, meaning that the stereotypes evaluated are more reflective of the US and the Western world,
and likely are not universal. In addition, the Pythia model family was trained for research purposes
and not for use in production, so our results may not completely reflect how models trained for
deployment behave. Lastly, when we suggest early stopping as a fairness intervention for Pythia-6.9b,
we are only evaluating fairness on one axis (binary gender), so early stopping at the point identified
may have some unintended consequences on other axes of bias. Further, early stopping simply works
around bias, instead of truly mitigating it.

B JS Divergence by Parts

JSD-P is similar to Jensen-Shannon Divergence (JS Divergence), but we do not sum across all
individual divergence components. Instead, we examine each token’s contribution to the overall
divergence individually, in order to understand if certain answer options contribute to the overall
divergence more than others. Therefore, JSD-P is more interpretable than JS Divergence.

We compute JSD-P individually across all potential answer tokens in S (for our evaluation S =
{male, female, not}) over a subset of prompts evaluated W (in Fig. 1(d), it is all prompts where
the answer is “not specified”).

Average JSD-P is computed using:

D(A(i)j , B(i)j)i∈S,j∈W = A(i)j ∗ log

(
A(i)j
B(i)j

)
(1)

JSD-Pi∈S =

∑
j∈W

1
2

(
D(Pideal(i)j ,M(i)j) +D(P (i)j ,M(i)j)

)
|W |

(2)

where:

Pideal(x)y =
{

0 if x is not correct answer
1 if x is correct answer

for token x ∈ S and model prompt y

P (x)y = softmax([ϕ(male)y, ϕ(female)y, ϕ(not)y]) for token x ∈ S and model
prompt y, where ϕ(x)y represents model output scores for prompt y

M(x)y = 1
2 ∗ (P (x)y + Pideal(x)y) for token x ∈ S and model prompt y

JSD-P measures the divergence between the model’s output probabilities for each answer option and
the correct answer (a one-hot categorical distribution). Differences in JSD-P between groups (like
“male” or “female”) indicate bias and unfair performance.

We utilize model outputs for “not” instead of combining the two token outputs for “not specified,”
because in this context, for the Pythia models, “specified” follows “not” with high probability the
majority of the time.

C Metrics Comparison

C.1 Average Rank vs Accuracy

AR is particularly beneficial when examining poorly performing models. In Fig. 2, we can see that
while accuracy is close to 0% for the majority of training, AR increases until ≈85k steps, declines
between ≈85k and ≈100k steps, then increases again. When selecting the most performant model
checkpoint, AR indicates that we should select a model around step ≈100k, while accuracy cannot
capture a difference in performance between any of these checkpoints. Further, since accuracy
is a non-linear metric, when evaluated during training, it can lead to fallacies like observing the
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Figure 2: Average Rank for “female” captures more information than accuracy when the target
answer is “female” for Pythia-160m. Accuracy remains close to 0 throughout training, while AR
increases until ≈85k steps, declines between ≈85k and ≈100k steps, then increases again.

sudden emergence of good performance at a training step, when the emergence is simply due to the
all-or-nothing nature of the metric [16]. The same issue does not hold for AR.

C.2 JSD-P vs Stereotype Accuracy

We compare JSD-P with an all-or-nothing fairness metric called Stereotype Accuracy (SA) as defined
in Biderman et al. [1]. SA examines how accurately the model predicts stereotypical answers on
the pro-stereotypical split of WinoBias. SA scores 1 and 0 are most biased, and 0.5 is least biased
(considered random). In Fig. 3, SA slightly decreases throughout training, which indicates that the
model’s bias is slightly increasing during training. However, this lacks details found in Fig. 1(b); with
JSD-P, we are able to understand that the model’s confidence in its predictions increases over time,
and more so when predicting “male” than “female.”

Apple Confidential–Internal Use Only

Figure 3: Stereotype Accuracy as defined by Biderman et al. [1] vs JSD-P per correct answer (“male”,
“female”). JSD-P per correct answer captures more information than Stereotype Accuracy. After
≈80k steps, there is a noticeable trend change in JSD-P per correct answer, while any change in
Stereotype Accuracy is undetectable.
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(a) JSD-P per correct answer (“male”, “female”) and performance on Open AI’s LAMBADA benchmark on
Pythia-6.9b, with standard deviations.
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Mann-Whitney U Test: JS Divergence by Parts, Correct Answer

(b) Mann-Whitney U Test illustrating that the JSD-P of “male” and “female” in Fig 4(a) are significantly different
(p < 0.01) after ≈80k steps.

Figure 4: Detailed standard deviation and significance measures for Fig. 1(b).

D Standard Deviation and Statistical Significance

Each experiment was repeated with 5 separate random seeds that determined the order of the options
(“male,” “female,” and “not specified”) presented in each model prompt. For the figures presented in
the main body, Figs. 4(a), 5(a), and 6(a) calculate the standard deviation across these 5 runs, while
Figs. 4(b), 5(b), and 6(b) illustrate the significance of our results.
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(a) Average Rank per correct answer (“male”, “female”, “not specified”) on Pythia-6.9b, with standard deviations.
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Mann-Whitney U Test: Average Rank per Answer (Male & Female)

(b) Mann-Whitney U Test illustrating that the AR of “male” and “female” in Fig 5(a) are significantly different
(p < 0.01) after ≈80k steps.

Figure 5: Detailed standard deviation and significance measures for Fig. 1(c).
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(a) JSD-P on gendered options for prompts where “not specified” is correct on Pythia-6.9b vs 160m, with
standard deviations.
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(b) Mann-Whitney U Test illustrating that the JSD-P of “male” and “female” between Pythia-6.9b and 160m in
Fig 1(d) are significantly different (p < 0.01) throughout training.

Figure 6: Detailed standard deviation and significance measures for Fig. 1(d).
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