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1 Models of the social world in GenAI evaluations

Recent scholarship has started to make explicit the normative values and commitments of GenAI
and Machine Learning (ML) practices [3] and evaluation [12]. In this provocation, we extend this
line of inquiry by arguing that we need to attend to the implicit values and assumptions reflected in
how societal impacts are conceptualised and constructed through ML evaluations.1 Doing so reveals
that the work of assessing and managing societal impacts of GenAI is best conceptualised through
a governance, rather than a prediction, frame.

Evaluating GenAI’s societal impacts requires a model of how these impacts manifest [16]. This
model, often implicit, enables interpretation of how GenAI systems interact with people and social
structures; the model constructs particular social factors as capable of, and deserving of, measurement.
We ask: what is the model of societal impacts reflected in existing efforts to evaluate GenAI systems?
One avenue to understand this model is to look at taxonomies of societal impacts [e.g., 27, 25, 30]
which provide conceptual infrastructure for societal impact evaluations of GenAI [for an alternate
approach see 22]. We note that some taxonomies refer to societal risks or harms, rather than impacts.
Whilst we are wary of conflating these terms [5], in this provocation, we use “taxonomies of societal
impacts” as a catchall category for efforts to develop a classification or categorisation system for
relating GenAI to social phenomena.

2 Taxonomies of societal impacts
Taxonomies of societal impacts exist for a range of GenAI technologies and components, including
foundation models [8], text-to-image models [1], large language models [30], speech generation
models [13], AI agents [6], and GenAI or algorithmic systems more generally [27, 25]. These
tools direct the attention of GenAI evaluators, and provide structure for GenAI evaluations, in
at least three ways. First, taxonomies of societal impacts enable researchers and practitioners to
think systematically about the potential consequences of deploying GenAI technologies. Taxonomy
development is, therefore, ontological work that has far-reaching consequences for the way
researchers and practitioners understand the relationship between GenAI technologies, people, and
society [18, 4]. Indeed, the development of bespoke taxonomies for different GenAI technologies
implies a conceptualisation of societal impacts that centres technology as the primary causal
determinate of harms and positions technology developers as the critical actors in impact evaluations
(for contrast, imagine a range of taxonomies for different social contexts).

Second, taxonomies of societal impacts direct attention by navigating the tension between abstraction
and contextualisation, which is present throughout AI development [24]. GenAI components tend

1Societal ‘impacts’ is the phrasing generally adopted in responsible AI literature, which we follow. ‘Impact’,
however, is suggestive of immediacy and collisions. (Mateescu and Elish have made a similar point about
‘deploy’ [17].) Social ‘outcomes’ may be preferable. This encourages thinking about long-term and second- and
third-order outcomes of introducing AI systems into society.
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to be understood within an abstract space that disregards the social context of their development
[16]. Social harms, meanwhile, are understood as being deployment, i.e., context, dependent [e.g.,
27]. Shelby et al. [25], in their taxonomy, attempt to navigate this tension by distinguishing between
harms that originate with computational components of AI systems, and harms that originate in their
deployment. Yet, GenAI systems (e.g., ChatGPT) are deployed extremely broadly, cutting across
vast swathes of different social contexts. In this context, taxonomies direct attention towards forms
of harm that can be tested or detected at the abstract level of the GenAI model, within the broader
software evaluation paradigm in which GenAI deployment occurs [e.g., GPT4, 19].

Third, taxonomies of societal impacts also direct attention towards prediction and trade-offs, centring
the site of GenAI development rather than application or deployment contexts. Taxonomies are often
framed as predictive tools, enabling practitioners to forecast risks of GenAI deployment [e.g., 30, 1].
Yet, in attempting to develop an exhaustive schema of potential impacts, taxonomies invite comparison,
and trade-offs, across disparate categories of societal impacts [9], such as “trust in media and
information”, “community erasure”, and “intellectual property and ownership” [27]. Implicit in this
organisation is a conceptualisation of societal impacts as modular, independent, and commensurable,
with GenAI developers positioned as arbitrators in determining which impacts to address, and how.

3 Conceptualising the societal impacts of GenAI

A conceptualisation of societal impacts that centres GenAI technologies and GenAI developers may be
useful, in terms of producing a discourse on social outcomes that is tractable within GenAI, but should
be approached with caution. Critical questions to consider include: what factors should be centred
when thinking about GenAI’s societal impacts? what are the limits of societal impact prediction? how
should evaluators balance different forms of societal impacts? To begin responding to these questions,
we offer three premises for rethinking the relationship between GenAI, people, and society.

Societal impacts should be understood as application- and context-specific [28, 16] and indeterminate
[32]. Failure to do so produces an understanding of societal impacts that is universalising and self-
fulfilling; the work of evaluating societal impacts becomes the work of extending patterns of social
relations from one place to many [11]. Societal impacts of GenAI should be thought of at the system
level, with the GenAI system situated in a particular social context [cf., regarding model explanations,
26]. Impacts manifest when a model is integrated into a sociotechnical system, and implemented in a
specific social setting [25]. Context-specificity makes predictions about societal impacts difficult and
unverifiable. Consequently, taxonomies of societal impacts are inherently partial, always incomplete.

Some societal impacts should be understood as incommensurable [10]. The scaling of large multilin-
gual models to include many languages, including Indigenous languages, illustrates this phenomenon
[20, 14]. Such scaling is motivated by the assumption that language technologies should be accessible
to everyone in their first language [2], which leads to model evaluations focused on identifying and
rectifying performance disparities across languages. Yet, how should evaluators reconcile issues of
disparate performance with issues of Indigenous data sovereignty, given one strategy to improve
GenAI performance is to collect more language data? Navigating these trade-offs is particularly
problematic when the objectives of GenAI developers may diverge from those of local communi-
ties. Some Australian Aboriginal and Māori communities prioritise managing cultural knowledge,
including language data, to support intergenerational transmission rather than expanding access to
language technology [7, 29]. In contexts like these, while taxonomies of societal impacts can help
GenAI practitioners identify a broad range of impacts, GenAI practitioners are not well-positioned
to balance competing impacts–these are value-laden decisions that require community leadership.
Taxonomies can support such leadership by enabling practitioners to identify relevant stakeholders
associated with different societal impacts [1].

Finally, questions of societal impacts are questions about social power. Taxonomies of societal
impacts enable evaluators to decide what to include (and exclude) in their evaluations. This legitimises
particular concerns or forms of impact as salient to GenAI. As evaluation practices mature and become
standardised, they gain efficacy, in terms of their capacity to enforce the values, simplifications, and
assumptions they reflect [15, 23]. The dominance of cost-benefit analysis in environmental impact
evaluation, for example, supports a capitalist and extractive epistemology, in which the worth of the
environment is expressed in monetary terms [31]. Efforts to standardise societal impact evaluation—
worthy as they are—should, therefore, be understood as sociopolitical efforts that can reify or resist
particular social orders. Who determines which societal impacts to focus on matters.
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4 Broader impacts: for a governance-first approach
The conceptualisation of societal impacts sketched above suggests redirecting efforts away from
evaluations of potential harms and towards a governance-first approach to GenAI oversight. If
societal harms are contextually contingent and indeterminate, then anticipatory evaluations may not
be as effective at identifying and mitigating impacts as robust governance and monitoring of GenAI
deployment led by stakeholders or governments. Reflecting this, a governance-first approach would
demand accountability to, participation of, and deliberation within, stakeholders or communities
impacted by GenAI deployments [21]–for example, to determine how to balance disparate impacts.
While practical recommendations for implementing a governance-first approach are beyond the
scope of this provocation, a helpful starting place is to reconsider the role of taxonomies in RAI
evaluations. Taxonomies and other evaluation tools can serve as useful inputs to robust governance
and accountability processes [18]. However, without first establishing sustainable, representative
governance structures (or engaging with those that already exist), these tools risk generalising
predictions of harms across diverging contexts, equating incommensurable impacts, and ultimately
serving the interests of GenAI researchers and developers rather than affected communities.
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